A Generalized ANOVA Dimensional Decomposition for Dependent Probability Measures
نویسندگان
چکیده
منابع مشابه
Generalized Functional ANOVA Diagnostics for High Dimensional Functions of Dependent Variables
We study the problem of providing diagnostics for high dimensional functions when the input variables are known to be dependent. In such situations, commonly used diagnostics can place an unduly large emphasis on functional behavior that occurs in regions of very low probability. Instead, a generalized functional ANOVA decomposition provides a natural representation of the function in terms of ...
متن کاملMulti-Element Generalized Polynomial Chaos for Arbitrary Probability Measures
We develop a multi-element generalized polynomial chaos (ME-gPC) method for arbitrary probability measures and apply it to solve ordinary and partial differential equations with stochastic inputs. Given a stochastic input with an arbitrary probability measure, its random space is decomposed into smaller elements. Subsequently, in each element a new random variable with respect to a conditional ...
متن کاملFunctional ANOVA Models for Generalized Regression
Functional ANOVA models are considered in the context of generalized regression, which includes logistic regression, probit regression and Poisson regression as special cases. The multivariate predictor function is modeled as a speci ed sum of a constant term, main e ects and interaction terms. Maximum likelihood estimates are used, where the maximizations are taken over suitably chosen approxi...
متن کاملExtended Polynomial Dimensional Decomposition for Arbitrary Probability Distributions
This paper presents an extended polynomial dimensional decomposition method for solving stochastic problems subject to independent random input following an arbitrary probability distribution. The method involves Fourier-polynomial expansions of component functions by orthogonal polynomial bases, the Stieltjes procedure for generating the recursion coefficients of orthogonal polynomials and the...
متن کاملKullback-Leibler Approximation for Probability Measures on Infinite Dimensional Spaces
In a variety of applications it is important to extract information from a probability measure μ on an infinite dimensional space. Examples include the Bayesian approach to inverse problems and (possibly conditioned) continuous time Markov processes. It may then be of interest to find a measure ν, from within a simple class of measures, which approximates μ. This problem is studied in the case ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2014
ISSN: 2166-2525
DOI: 10.1137/120904378